Tag Archives: Glass Fiber Reinforced Concreate


The architectural GFRC (Glass Fiber Reinforced Concrete) presents a unique opportunity for architects and contractors.

The panels are only 3/4″ thick and yet are strong. This minimizes the structural support requirements. The panels can achieve the look and finish of other stone products. With the AAS technology and fabrication technique, the panels can be large in size when required with intricate shapes.

For renovating the Marriott Hotel in downtown Ft. Worth, the designers wanted to use GFRC panels to conform to existing building profile conditions. The AAS team worked closely with the architect and contractor to achieve panels with more than 20 ft. of length and highly complex angles. The connections to hang the panels were built-in during the engineering and manufacturing process, simplifying the installation.

Images below show an example CAD drawing, a large panel with pre-engineered connections ready for shipment, and installation progress on the site.

CAD Drawing for One Panel


Marriott Hotel CAD Drawing - Section 3_103 - third level column cap and cornice detail

Coordination between a column cap and a cornice – Detailed engineering confirmed design feasibility and simplified installation process

Example: Custom-fabricated Large GFRC Panel

GFRC panel being Cast with Steel Frame Attachments

GFRC panel being Cast with Steel Frame Attachments

GFRC panel with Pre-engineered Connections Loaded for Shipping

GFRC panel with Pre-engineered Connections Loaded for Shipping | More than 20 ft long architectural GFRC

Installation Site: Marriott Hotel, Ft. Worth, TX

Detailed Engineering for Seamless Coordination of Columns and Cornices

Detailed Engineering for Seamless Coordination of Columns and Cornices

Marriott Hotel - GFRC Cladding

Marriott Hotel – GFRC Cladding


Concrete has captured the imagination of designers for thousands of years offering options and flexibility to mold it in different shapes and surface finishes.

The architectural GFRC (Glass Fiber Reinforced Concrete), also known as lightweight concrete, is able to extend the range of possibilities that can be realized using concrete. The AAS fabrication methodology empowers designers to customize product shape, color, finish, as well as attachment connections to achieve the design intent. GFRC is much simpler to install than other cast stone products or limestone.

GFRC - Glass Fiber Reinforced Concrete - Design options, flexibility

GFRC – Design options, flexibility



  • Applications: wall units, window wall units, mullions, spandrels, column covers or wraps, cornices & banding, trim, soffits, sunscreens, custom cladding, veneer, or facade design, coping, interior features, etc.
  • Designers have the flexibility to achieve deep reveals, complex shapes, short radius curves, wide sweeping arcs, as well as sharp angels.
  • With a face mix, a GFRC panel is indistinguishable in exterior appearance from traditional precast or cast stone. The AAS team has the track record to use GFRC in place of limestone for high-end design aesthetic at fraction of the cost.
  • A wide range of surface finishes can be achieved by using exposed aggregate faces such as acid wash, sandblasting, integral color, white cement, and texture.


GFRC - Structural, Engineering, Installation Advantages

Structural & Installation Advantages



  • The low weight of GFRC panels decreases superimposed loads on the building’s structural framing and foundation.
  • The GFRC panels are ideal for use on buildings where heavier cladding systems would increase the size of required framing members.
  • For rehabilitation or retrofit projects, the use of GFRC panels for re-cladding minimizes the load added to the existing structure.
  • The lightweight of the GFRC panels allows the contractor to quickly and efficiently erect panels even in hard to reach areas, using smaller, less expensive equipment.


GFRC - Project Specific Manufacturing, Support

Project Specific Fabrication, Support




GFRC Design Process Case Study - SMU Delta Gamma Sorority House Project

GFRC Design Process Case Study



  • See examples of the project-specific design of GFRC products.
  • See videos of the GFRC manufacturing process.
  • Collaboration with customers for design-assist, as well as construction-assist.


Architectural GFRC | Pre-engineered, Built-in Connections | Installation Support | Installation of GFRC Products at SMU Delta Gamma Sorority House

Architectural GFRC | Pre-engineered, Built-in Connections | Installation Support | Installation of GFRC Products at SMU Delta Gamma Sorority House






The AAS team is able to provide design assist to the architect and contractor for a project. The in-house engineering support team develops detailed attachment connections that will achieve the design objectives.

The shop drawings will provide the architect and installer an opportunity to review the attachment and make the final detailing.


General Rules for attachment


  • GFRC pieces up to about 4 feet x 6 feet can often be produced without an additional structural back-up. The manufacturer will add a stiffener-rib to the product back side for added support. A stiffener usually runs the height of the piece every 24 to 30 inches of the product and has very concentrated glass fiber to cement mix. The product can be attached via a veneer tie and strap, kerf and clip, or similar attachment to the structure of the building.
  • Larger pieces or pieces where a stiffener-rib is not appropriate are generally hung with a metal stud back-up. The metal stud system is designed and attached to GFRC piece by the manufacturer as part of the cost of the GFRC on the project. Metal stud back-up is very similar to metal stud framing on most commercial projects, but designed with more precision. The metal stud back-up is usually attached with a grade #2 bolt to the structure of the building. There are occasions where the metal stud framing is welded to the structure. Again the specifications on the welding should follow AWS (American Welding Society) standards.
  • Very large pieces (larger than 8 feet x 20 feet) will have tube steel back-up. The process is much the same as with metal studs discussed above. This back-up will be engineered by AAS.




  1.  AAS is able to provide type of connection that is preferred by customer. GFRC provides flexibility with selection of the connection type.
  2. Once the connections are selected, the AAS manufacturing and design process is able to pre-engineer the connections support in the products.
  3. GFRC is much simpler and less expensive to install compared to other much heavier stone products. GFRC installation doesn’t require extensive support structure and heavy construction equipment at the project site.
  4. AAS GFRC products provide flexibility to select right application of caulk or sealants making it easier for masonry contractors not only in their installation process, but also with long term reliability of the installed projects.




What does it take to design and manufacture Architectural GFRC products?

What makes Architecture GFRC ideal for higher elevation applications?


See the manufacturing process and technology used for cornices of the new sorority house building at the Southern Methodist University (SMU) in step-by-step sequence of videos in this blog post. These video clips are captured at the Mesa Precast plant of Advanced Architectural Stone; this plant is located in Tempe, AZ.


Step One: Custom Molds


AAS team used the in house custom mold making technology and craftsmanship to create the required molds of specific shape for each GFRC panel used on this project. For the exterior cornices of the building, these molds are big in size as well. See more on it in their video.




Step Two: Spray Mix for GFRC

The Architectural GFRC (Glass Fiber Reinforced Concrete) products are manufactured by spraying specific mix. AAS has automated batch plant system to create the right mix with precise control over proportions and consistency.

See spray mix getting ready for the manufacturing in this video.




Step Three: Facing Mix

The first step in creating 3/4 ” thick GFRC panel is, applying the face mix. It doesn’t have any fibers in it. It helps create a smooth finish on the outside. In this project, the cornices are going to be acid etched, so the smooth surface is very helpful for creating that finish later on.

See facing mix being applied…



The face mix is brushed to make sure all surfaces are covered, and also there are no air bubbles…



Step Four: Applying Back up Mix

Next step in the manufacturing is applying back up mix that has fibers in it. This is applied over three layers typically with brushing and packing in every step to eliminate bubbles and gaps in the panels.

Material technology to create the right mix is one of core differentiators of the Advanced Architectural Stone.



Watch back up mix being compacted using brush and rollers in this video clip…



Step Five: GFRC Frame for Attaching Cornice to the Building During Installation


The idea with this GFRC cornice is to simplify installation with per-engineered steel installation frame attached to the GFRC skin, so that from outside it looks like a solid concrete piece…



While the frame is being integrated into the GFRC panel structure, edges are also thickened to make the product stronger and structurally more sound.





GFRC Cornice Ready for Surface Finishing and then for the Installation


The the manufactured Cornice piece realized with custom molds, right materials selection, and specific technology and expertise in creating an engineered piece precise in tolerance, ready to install.




While it looks like solid concrete from the outside, this Architectural GFRC cornice is so light in weight when compared to concrete or other cast products such as cast stone or architectural precast. This makes Architectural GFRC ideal for higher elevation applications.